The fundamental solutions for fractional evolution equations of parabolic type
نویسندگان
چکیده
منابع مشابه
The Fundamental Solutions for Fractional Evolution Equations of Parabolic Type
where 0 < α≤ 1, Γ(α) is the gamma function, {A(t) : t ∈ [0,T]} is a family of linear closed operators defined on dense set D(A) in a Banach space E into E, u is the unknown Evalued function, u0 ∈ D(A), and f is a given E-valued function defined on [0,T]. It is assumed that D(A) is independent of t. Let B(E) denote the Banach space of all linear bounded operators in E endowed with the topology d...
متن کاملAveraging for Fundamental Solutions of Parabolic Equations
Herein, an averaging theory for the solutions to Cauchy initial value problems of arbitrary order, "-dependent parabolic partial di erential equations is developed. Indeed, by directly developing bounds between the derivatives of the fundamental solution to such an equation and derivatives of the fundamental solution of an \averaged" parabolic equation, we bring forth a novel approach to compar...
متن کاملEvolution Equations of Parabolic Type
be linear and quasilinear evolution equations of parabolic type in a Banach space X respectively. By "parabolic type" we mean that A(t) and A(t,u) are all the infinitesimal generators of analytic linear semigroups on X we do not necessarily assume that the domains of the operators A(t) and A("t,u) are dense subspaces of X, so the semigroups generated by them may not be of class c0 J. The domain...
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملREGULARITY FOR ENTROPY SOLUTIONS OF PARABOLIC p-LAPLACIAN TYPE EQUATIONS
In this note we give some summability results for entropy solutions of the nonlinear parabolic equation ut − div ap(x,∇u) = f in ]0, T [×Ω with initial datum in L1(Ω) and assuming Dirichlet’s boundary condition, where ap(., .) is a Carathéodory function satisfying the classical Leray-Lions hypotheses, f ∈ L1(]0, T [×Ω) and Ω is a domain in RN . We find spaces of type Lr(0, T ;Mq(Ω)) containing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Stochastic Analysis
سال: 2004
ISSN: 1048-9533,1687-2177
DOI: 10.1155/s1048953304311020